A genetic algorithm for continuous design space search
نویسندگان
چکیده
Genetic algorithms (GAs) have been extensively used as a means for performing global optimization in a simple yet reliable manner. However, in some realistic engineering design optimization domains the simple, classical implementation of a GA based on binary encoding and bit mutation and crossover is often ineecient and unable to reach the global optimum. In this paper we describe a GA for continuous design-space optimization that uses new GA operators and strategies tailored to the structure and properties of engineering design domains. Empirical results in the domains of supersonic transport aircraft and supersonic missile inlets demonstrate that the newly formulated GA can be signiicantly better than the classical GA in both eeciency and reliability.
منابع مشابه
A Continuous Plane Model to Machine Layout Problems Considering Pick-Up and Drop-Off Points: An Evolutionary Algorithm
One of the well-known evolutionary algorithms inspired by biological evolution is genetic algorithm (GA) that is employed as a robust and global optimization tool to search for the best or near-optimal solution with the search space. In this paper, this algorithm is used to solve unequalsized machines (or intra-cell) layout problems considering pick-up and drop-off (input/output) points. Such p...
متن کاملSTRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM
The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...
متن کاملOPTIMIZATION OF SKELETAL STRUCTURES USING IMPROVED GENETIC ALGORITHM BASED ON PROPOSED SAMPLING SEARCH SPACE IDEA
In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined...
متن کاملHybrid Teaching-Learning-Based Optimization and Harmony Search for Optimum Design of Space Trusses
The Teaching-Learning-Based Optimization (TLBO) algorithm is a new meta-heuristic algorithm which recently received more attention in various fields of science. The TLBO algorithm divided into two phases: Teacher phase and student phase; In the first phase a teacher tries to teach the student to improve the class level, then in the second phase, students increase their level by interacting amon...
متن کاملDISCRETE SIZE AND DISCRETE-CONTINUOUS CONFIGURATION OPTIMIZATION METHODS FOR TRUSS STRUCTURES USING THE HARMONY SEARCH ALGORITHM
Many methods have been developed for structural size and configuration optimization in which cross-sectional areas are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes two efficient structural optimization methods based on the harmony search (HS) heuristic algorithm that treat both discret...
متن کاملCONFIGURATION OPTIMIZATION OF TRUSSES USING A MULTI HEURISTIC BASED SEARCH METHOD
Different methods are available for simultaneous optimization of cross-section, topology and geometry of truss structures. Since the search space for this problem is very large, the probability of falling in local optimum is considerably high. On the other hand, different types of design variables (continuous and discrete) lead to some difficulties in the process of optimization. In this articl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AI in Engineering
دوره 11 شماره
صفحات -
تاریخ انتشار 1997